Evaluation of thiol acetates (CH₃OSR) and disulfides (RSSR) as lipidic anchors in tethered bilayer membranes (tBLMs)

Perri Weinstein

Advisors: Dr. David Vanderah and Dr. Frank

Heinrich

Integral Membrane Proteins (IMPs)

- Cell membranes composed of phospholipid bilayer
 - Hydrophilic and hydrophobic
- Proteins carry out a variety of functions
 - Channels
 - Receptors
 - Enzymes
- Structure and function studies

Why we are doing this work

- Native bilayers are complex
 - Many different types of IMPs and lipids
- Structure and function studies are difficult with IMPs
- Tethered Bilayer Lipid Membranes (tBLMs) create a model for studying IMPs
 - Environment stable for days
 - Surface measurements

tBLMs

Solvent environment: Hydrophilic exterior

Outer leaflet: floating bilayer

Inner leaflet

Sub-membrane space

Mixed Self Assembly Monolayer (SAM)

Gold substrate to bond with sulfur atoms

Hydrophobic interior

Tether molecule
Small, separation molecule

tBLM Preparation – Rapid Solvent Exchange Method

Step 1: Mixed SAM

Incubation with tether & small molecule

Ng 2008 SURF talk

•Gold substrates sit in solution for 1-5 days

Step 2: Create tBLM

Rapid Solvent Exchange

•Floating bilayer to replicate cell membrane fluidity

The Key Players

- WC 14
 - HS(CH₂CH₂O)₆CH₂CH(OR)CH₂(OR)
 - where R=C₁₄H₂₉
- [β -mercaptoethanol (β ME)]
 - HSCH₂CH₂OH

- Thiols lack long term stability!!!!!! Looking for alternatives
- Thiol acetates
 - H₂COS(CH₂CH₂O)₆CH₂CH(OR)CH₂(OR)
 - H_3 COSCH₂CH₂OCH₃ (β ME methyl ether = β MEOMe)
- Disulfides
 - R'SSR', where R' = $(CH_2CH_2O)_6CH_2CH(OR)CH_2(OR)$
 - HOCH₂CH₂SSCH₂CH₂OH

Surface Measurements

- Ellipsometry
 - An optical metrology that allows the determination of thin film thicknesses
- Contact Angle
 - A technique that allows the determination of the surface energy (hydrophobicity/hydrophilicity)

 Hydrophobic drop

 Hydrophobic drop

- Neutron Reflectivity
 - A scattering technique that allows the determination of the structure of films
- Electrochemical Impedance Spectroscopy
 - An electrochemical technique that measures the resistance and capacitance of films as a function of frequency to describe the bilayer and its imperfections

Ellipsometry Data: thiol acetates

- Refresher: determination of thin film thicknesses
- Graph of 1 of 3 data sets
- SAM growth as a function of increasing tether concentration and time

WC14 Thiol acetate & BMEOMe Solutions at 0.2 mM

Ellipsometry Data: R'SSR'/[βMES]₂

- Graph of 1 of 2 data sets
- SAM growth as a function of increasing tether concentration and time
- Anomalies could be due to large molecules laying down on the surface >
 "blanket theory"

WC14 Disulfide & βME Disulfide Solutions at 0.1 mM

Contact Angle Data: thiol acetates

- •Refresher: determination of the hydrophobicity/hydrophilicity of the surface
- •Contact Angle less than WC14 thiol→ surface is less ordered

Contact Angle Measurements of Thiol Acetates

Contact Angle Data: disulfides

• Same results for disulfides as thiol acetates: not as ordered as thiols

Contact Angle Measurements of Disulfides

Neutron Reflectometry

- •Refresher: determination of structure of films based on scattering of a reflected neutron beam
- Using a known scattering length of each nuclei and a known number of atoms
 calculate material density (SLD)
- Sample: 70:30 tether composition \rightarrow 50% less SAM seen than WC14,
 - NOT well ordered
- Only incubated for 24 hours
 - •Would have told us about the sub-membrane space if timing was not an issue

Electrochemical Impedance Spectroscopy (EIS)

- Refresher: measures the resistance and capacitance of films as a function of frequency
- Performed on 4 samples of WC14SAc:βMEOME: (A) 20: 80 (B) 30:70 (C) 40:60, (D) 100:0 (3 days)
 - Lower concentrations: bilayers did not form consistently
 - 100:0 SAM is reasonable and indicates good coverage, 100:0 BLM (bottom curve)
 - Reasonable, but higher capacitance than obtain with thiols \rightarrow leaky (less ordered, more defects)
- Overall, there's variability however the data indicates the formation of SAMs and tBLMs with thiol
 acetates

Conclusions and Upcoming Research

- Can thiol acetates and/or disulfides replace thiols in tBLMs?
- Maybe...
 - Less ordered
 - Lower contact angles
 - Increased capacitance
- So we are close but no cigar...yet
 - Collect more data on thiol acetates and disulfides
 - Especially with disulfides
 - Thicknesses very comparable to WC14 at high tether concentrations
- However, demonstrated the formation of a tBLM formation with thiol acetates
 - Look at long term stability

Acknowledgments

- David Vanderah
- Frank Heinrich
- Sandra Gutierrez
- Marlon Walker
- David Hoogerheide
- Duncan McGillivray
- John Marino

Questions?

